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pressure coefficient, C_, = (P - Poo)/(ll2pU_)

multihole probe pressure coefficients

A-D counts

a measurement-system dependent quanitity

equation of probe surface

manometer height

pressure

probe-cylindrlcal coordinate directions

distance to probe surface in r-direction, or

a result of a measurement

velocity components in x, y, z-directions

freestream velocity

right-hand Cartesian coordinate directions

multihole probe angle of attack

sideslip angle for multihole probe

cocked-probe stem angle

angle between x-axis and freestream flow direction

circumferential pressure tap location

pitch angle for multihole probe

air kinematic viscosity

transformed circumferential coordinate

air density

velocity potential

angle of rotation

yaw angle for multihole probe

Subscripts

d
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rt
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z

total

static

probe or cylinder diameter

manometer

pressure probe hole or sector number

reference value

zero applied pressure difference

freestream total pressure

freestream static pressure

refers to freestream conditions





1. SUMMARY

This report describes the calibration of a non-nulling, conical, seven-hole pressure probe

over a large range of flow onset angles. The calibration procedure is based on the use of

differential pressures to determine the three components of velocity. The method allows

determination of the flow angle to within 0.5 ° and velocity magnitude to approximately

1.0%. Also included is an examination of the factors which limit the use of the probe, a

description of the measurement chain, an error analysis, and a typical experimental result.

In addition, a new general analytical model of pressure probe behavior is described and

the validity of the model is demonstrated by comparing it with experimentally measured

calibration data for a three-hole yaw meter and a seven-hole probe.

2. INTRODUCTION

Multihole pressure probes have long been used to obtain velocity and pressure information

in fluid flows. A multitude of probe geometries have been developed, including certain

probes which are highly application-specific (e.g., turbomachinery, boundary layers, and

free shear flows). Reference 1 presents a concise summary of the different types of probes

and their calibration. The basic principle of operation, which most multihole probes have

in common, is the ability to determine velocity magnitude and direction from a measured

pressure differential. The particular choice of a probe type depends on interference effects,

probe access, probe volume, time response to mean pressure changes, sensitivity, and flow

inclination to the probe, among others.

The seven-hole probe was designed only recently for flows where the angle of the velocity

vector can be large with respect to the probe axis. It is possible to get comparable accuracy

using a four- or five-hole probe in a nulling mode, but nulling a probe can often be difficult,

especially near the surface of a body. In addition, because of the convenient fact that six

tubes of equal diameter fit exactly around a single tube of the same diameter, there is only

a minimal advantage to using fewer than seven holes as far as probe volume is concerned.

Development of the probe and calibration technique is described in reference 2. Further

refinements of the same basic technique are presented in references 3,4, and 5. Contained in

this report is a thorough examination of seven-hole probe calibration theory and the factors

which govern the use of seven-hole probes.

The seven-hole probe calibration technique described in reference 2 involves positioning

the probe at known angles to the flow and then measuring the seven pressures. Dimension-

less veloclty-invariant pressure coefficients, based on combinations of differences between the



seven measured pressures, are formed. Third-order polynomial functions for the flow proper-

ties are then determined based on the pressure coefficients and the known probe inclination.

Upon using the probe in an unknown flow field, a sectoring scheme is used to choose certain

combinations of the pressure coefficients depending on the relative magnitudes of the seven

measured pressures. This sectoring approach, which is the essence of the seven-hole probe

technique, permits measurement in flows of high angularity by selecting pressure probe holes

which have the greatest sensitivity to the flow (i.e., holes for which the flow on the probe

remains attached) being measured.

The calibration approach developed by Galiington is unique, and in many ways, quite

ingenious. It is flexible and can be applied to any seven-hole probe configuration. The

principles on which the calibration is based, are physical principles (nonempirical) which

can be analytically modelled. With careful application of the calibration techniques, a high

degree of accuracy can be achieved.

In the present effort, a few improvements have been made in order to simplify the calibra-

tion process and increase the accuracy. As shown in reference 5, the polynomial expressions

used to determine the flow onset angle (based on approximately 20 calibration points, and

a 5 o increment between points) can have a substantial standard deviation (deviation of the

curve-fit from the actual data at the basepoints of the data) of up to 1.4 °. To reduce these

errors, the approach taken herein is to use interpolation of the calibration data rather than

curve-fitted polynomial expressions. A drawback of this approach is that there are no re-

sponse equations which cover the entire range of the probe.

Another difficulty, Which is identified in reference 2, is that a method needs to be devel-

oped to determine if the flow on the probe is separated to such a degree to render the probe

unuseable. If a data point is taken in a flow where the flow angle exceeds the maximum

allowable for the probe, the data point may interpreted to be within the flow angle range of

the probe. This situation is, at times, difficult to detect and can lead to serious measurement

errors. The present calibration technique includes a check on the validity of a measured point

to indicate whether the flow angle is out of bounds.

When a probe is being selected or designed for a specific application, because of the large

number of possible configurations, choices are often made based on minimal performance

information, rules Of thumb, ancl experience, An accurate, easy-to-use method of determining

specific information such as probe sensitivity is desirable, especially during the probe design

phase. Existing analytical methods in the literature can be classified as either being based

on slender-body theory or based on potential flow-singularity methods. Reference 6 presents

the pros and cons of the two approaches. The main arguments in favor of the slender-

body approach is that it is possible to derive explicit analytic expressions for the calibration

functions. These expressions allow one to gain insight into the various scaling laws which

govern probe behavior. Unfortunately, the accuracy of the slender-body technique is limited

by the slender:Body assumption. The main advantage of the singularity method approach



is that an accurate numerical solution may be computed for complicated probe geometries.
The penalty is the amount of computer time required for one solution of a typical panel
method. The conclusion of this referenceis that slenderbody theory is preferred with the
recognition that all analytical methods are too approximate to preclude calibration.

Both methods have been investigated in the present study and, as will be shown, the
slenderbody approach was found to be too inaccurate to give much useful information to
probe designers.As a result, an efficient analytical method has been developed,basedon a
novel useof a panel method, to give a relatively accurate prediction of probe behavior.

The main objective of this report is to look at the theory of multihole probe operation and
showhow this theory applies to seven-holeprobes. A secondaryobjective is to demonstrate
a model of probe behavior which can be used to designa probe that is tailored to specific
applications. Additionally, this report documentsa seven-holeprobe calibration procedure,
which hasbeendevelopedand usedin a study of the flow past a body of revolution at a high
angle of attack.

3. MULTIHOLE PROBE THEORY

This section contains the fundamentals of multihole probe theory. Included is a discus-

sion of the pressure coefficient normalization, an outline of the seven-hole probe calibration

procedure, a sample result, a description of a general pressure probe analytical model, and

an error analysis.

3.1 Pressure Coefficient Normalization

Prior to the description of the seven-hole probe calibration technique, it is necessary to

detail how typical multihole probe calibration schemes work. In general, as can be deduced

from the descriptions of several different multihole calibration procedures presented in ref-

erence 1, there are features which most schemes have in common. The salient feature is a

normalization procedure which, when applied to the pressure differences measured between

two taps on the face of a multihole probe, allows the formulation of pressure coefficients

which are dependent on flow direction and independent of velocity. The same type of nor-

malization can be used to determine the total and static pressures. This pressure coefficient

normalization procedure is demonstrated below, and in the next section, it is used to form

the basis of the seven-hole probe calibration technique.

As shown in reference 7, (the first description in the literature of the multihole probe

pressure coefficient normalization technique), for a five-hole probe with the center hole pres-

sure labeled as P1 and the off-axis holes labeled as P2, P3, P4, and Ps, the four pressure



coefficients are given by

P_ - P5 P2 - P3 t"1 - P,o,.t P - P.,.,io
Cpo = ei _ P Cpa - P1--P Cp, o,., - P, _ p Cp.,_,,o - p_ _-p (1)

where

--p = _l (p2 + p3 + p4 + ps) (2)

The advantage of this approach to calibration is that the determination of four quantities,

based solely on pressures measured by the multihole probe, uniquely define the flow angle

of the probe and total and static pressure, hence the velocity vector. Normalization by

P1 - P has been incorporated in the majority of the multihole probe calibration procedures

developed in recent years (refs. 8, 9, 10).

The question arises as to why this type of normalization works and what are its limita-

tions. The original description reference 7 shows that for three and five-hole probes, when

the above normalization is used, the direction pressure coefficient Cp_, collapses on a straight

line (within experimental uncertainty) for flow angles up to 30 ° as the Reynolds number is

varied. No theoretical basis for the normalization procedure was given aside from the fact

that P1 - P is about one-half of the total pressure.

Additional insight into the velocity invariance of this type of normalization can be found

by considering a model problem of flow past a two-dimensional (2-D) circular cylinder (yaw-

meter) with three pressure taps located as shown in figure 1. If the Reynolds number is

much greater than 1, the flow on the windward side of the cylinder can be considered to be

a potential flow with the pressure coefficient, at any point defined by 0, given by

Cp P-P_-- I _ -- 1 - 4sin2(O - _) (3)
-_p Uoo

A yaw angle calibration pressure coefficient can be defined as

where

P3-P2 (4)
cP,- pl_

-- 1

P = + p3) (5)

After defining the angle r/ (pressure tap location) and substitution, the expression for

Cp_ is

4cos_sin_

Cpa = tanrl(cos2 _ _ sin2B)
(6)



The significance of this result is that Cp_ is dependent solely on the pressure hole location

and the yaw angle. Additional dimensionless coefficient expressions can be formed, which

are also explicitly velocity independent, but can be used to determine the vector magnitude

of the velocity.

I

Cp,,,.,,o P - P,t_,u, P, - Ptot,_l
= Px-P CP'°'"= P1-P (7)

The theoretical expressions for these coefficients as derived for the 2-D cylinder model

problem are

1 -- 4(sin2_Tco$I/3 + co82178in2_)

Cp.,.._ = 4Mn2rl (2cos_ - 1)

-nin2/3

= 1) (s)

The Bernoulli equation can be used with the static and total pressures to determine the

vector magnitude of velocity (n = 1 for yaw meter).

I _ I= - P)(1 + CPo,_,.c - CP,o,,,,)]{ (9)

If the flow angle/3 is small and the hole separation angle rj is chosen to be 30 ° then the

calibration coefficient expressions can be simplified to

Cp# = 4V/3/3 CPo,.,,,. = -3/3 2 CP, o,. , = -4/3 2 (I0)

Shown in figure 2 is a comparison between the analytical expressions (eqs. 6 and 8), the

small angle expressions (eq. 10), and experimentally measured coefficients (eqs. 4 and 7)

for a 30 ° yaw probe. The measured coefficients are based on surface pressure data taken

by a single pressure tap on a cylinder which was rolled 360 ° about its axis in 1 ° increments

(see fig. 3). This experimental data can be used to determine the equivalent response of a

cylindrical (3-hole) yaw probe at any angle of yaw and hole configuration.

If the flow angle exceeds approximately 25 ° for this probe, the calibration begins to

fail. As can be seen in figure 4, the spread in the experimentally measured Cpp becomes

appreciable for large flow angles. This is not surprising considering that Cp_ at large angles

is computed using pressure data which has a significant velocity dependence (see fig. 3) and

deviates from a potential flow.

These results can be extended to configurations other than circular cylinders (e.g., spheres

and cones). It appears that, in general, coefficients which are independent of velocity (to

within experimental error), may be formulated based on the ratio of two pressure differences,



measured on an aerodynamic shape which obeys the equations of potential flow (or flows

where the effects of viscosity are minimal). As will be shown, seven-hole probe calibration

theory operates on the same basic principles as flow past a three-hole yaw meter and similarly,

potential flow models can be used to predict the probe response.

There are some practical concerns such as measurement inaccuracies and the effects of

probe flow separation (a viscous effect) which also must be considered when choosing probes

and developing calibration schemes. Several of these difficulties will be addressed in the

following sections for a seven-hole probe. One advantage to developing analytical and small

angle models for probe response is that it becomes possible to determine the sensitivity of

the probe and the accuracy of the measured data. The results of a simple error analysis for

the three-hole yaw meter are presented in figure 5. This error estimate was derived using

standard error estimation techniques (explained in greater detail in a later section of this

paper), equations 4 and 7, and a pressure measurement resolution of 0.005 in. of H20. This

result shows (see fig. 5) that the flow angle and the velocity magnitude measuring accuracy

of the cylindrical yaw-meter vary parabolically with the flow angle.

3.2 Calibration Procedure For Seven-Hole Probes

The motivation for the development of the seven-hole probe techniques outlined in this

report was the desire to investigate the flow field on the lee side of a body of revolution at

angle of attack. In order to cover the complete anticipated flow angle range, it was necessary

to use a probe which was raked (-y = 30 ° ) from the horizontal as shown in figure 6. The

diameter of the probe was 0.125 in. and the half-angle of the conical tip was 45.0 ° . Also

presented in figure 6 is the hole-numbering convention and definition of the relevant probe

rotation angles.

The calibration was carried out in situ in a 15 by 15 in. low turbulence suction-type

wind tunnel (see fig. 7). A microstepping motor-driven mechanism (25,000 microsteps

per revolution) was used to accurately rotate the probe to known angles to the flow while

maintaining the position of the probe tip as close to the wind tunnel centerline as possible.

The rotation sequence used to position the probe involved pitching the probe through an

angle 0 in the wind tunnel x-z plane and then rotating the probe through an angle ¢ about

the probe stem (see fig. 6). This rotation sequence was chosen to minimize the mechanical

complexity of the probe angular positioning mechanism. The angle of attack and sideslip

angles of the probe (relative to the wind tunnel coordinate system) are given by

a = sin-l( e°sOc°sCsin'r
+ sinOcos"l

cos�3 ) (ii)

/3 =  ir -l (-cosO ir ¢ ) 02)

As can be seen from these expressions, for small 0 and ¢ angles (less than 15 ° ) 0 and -¢ are

approximately equal to a and/3 for an unraked probe (_/=- 0).



The approach to calibrating a seven-hole probe is similar in theory to the calibration

procedure developed in reference 7 for five-hole probes. The difference between five- and

seven-hole probe calibration is that only selected combinations of seven-hole probe holes are

used to define the four unknown calibration coefficients whereas all the holes of a five-hole

probe are used. The impact of using certain combinations of holes is that the useful flow

angle range of the probe is greatly extended over that of a five-hole probe of similar geometry

but the calibration complexity is increased.

At flow angles exceeding approximately 30 ° , the flow on the lee side of most probes will

begin to separate. Calibration coefficients based on the pressure variations sensed by holes

located beneath the separated region will no longer uniquely determine the flow angle of the

probe (probe coefficients become multi-valued). To avoid this situation, a sectoring scheme

such as that described in reference 2 may be devised which selects combinations of holes for

which the flow is attached. The calibration coefficients are formed by using the hole that is

sensing the maximum pressure and the holes adjacent to the maximum pressure hole. This

process is referred to as choosing the probe sector.

The calibration procedure involves positioning the probe at known pitch and yaw angles

to the flow and then measuring the seven pressures. Using the normalizing procedure based

on principles developed in reference 7, and discussed in the previous section, pressure coeffi-

cients can be defined which are dependent on flow angle and insensitive to variations in the

magnitude of the velocity (similar in form to eq. 4). For seven-hole probes, a total of 12

dimensionless pressure coefficients (2 for each sector) for the flow angularity are formed for

use at high flow onset angles, (greater than approximately 20 ° ) as described in reference 2.

Pt- P7 Cp,, = Pe- P2 (13)
Cp,, = P1- _ P1 -

2 2

P2 - P, C p,2 - Pl - Ps (14)
Cp,2 = P2-_ P2 -p-a-*-_

_ Ps - P7 /'2 -/'4 (15)
Cp,_ ps _ p_+p_ Cv, = ps _ _

2 2

/'4 -/'7 P3 -/'5 (16)
CP,, =p4__ CP,,-- p4 P_a_t_

2 2

_ Ps-P7 Cp, -- P4-P, (17)
c p,, ps _ e.,___ ps _ e_,__._

2 2

P6 - P_' Cp,. - /'5 - P1 (18)
C P, , - ps _ P_+P, ps _ E__.___

2 2

In reference 2, the direction-sensitive coefficient nomenclature contains a reference to the

flow direction 0 and ¢ (Cpo, , for example). This convention is inappropriate in the present



context because of the strong coupling between the direction coefficients. As a result, the

subscripts r (for radial pressure difference) and t (for tangential pressure difference) have
been used to distinguish between the two direction-sensitive coefficients.

The total and static pressure coefficients are also dependent on the sector and are defined
as follows.

1:'2 -- Ptot,u P_+P_ - P_t.ti_

CP'°'"'2 P2 - _2 CP.,,,,, 2 = p2 _ p_+p._ (20)
2

1'3 - Ptot,.l _ - P.t.u,

Cv, o,.,_ = P3 - _2 Cv.,.,,o 3 = p3 _ p___¢__ (21)
2

P4 -- P_ot,,t _ - P.t.ti¢

CP, o,.,, P4 -- _ Cp.,.,,., J_4 -- _ (22)
2 2

_ t:'5 - P, ot._ _ - P.t.._

CP'°'"'s 1:'5 - P'+P_2 Cp.,.,,o 6 = P5 - _2 (23)
2

P6 - Ptot,_z _ - P.t..o
- = (24)

CP'°'"'6 P_ - P_+P' CP"'"ce P6 -
2 2

At low angles, (less than approximately 30 ° ) the flow is fully attached on the tip of the

probe. Under these conditions, greater probe sensitivity may be obtained by using pressures

measured by all seven holes. Two coefficients may be defined, based on a linear combination

(see ref. 2 for further details) of the following three velocity-invariant coefficients.

where

P4 - & t'3-t'6 P2- P5
Cp,. = Pr- ff CP'b- P7- P Cp,o - P7- P (25)

-- 1

P= -_(& +P2+&+ &+Ps+P_)

At low angles, the following expressions are used (as derived in ref. 2)

(26)

The static and total pressure coefficients at low angles are given by

P7 - Ptot.t P - P,t,_ti,

c_.,o,.,, = P7 - P c_,.,°.o. = Pr - P (2s)

1
Cp,_ - Cp, o C_,_, - + Cp,,) (27)

Cp,, = Cp,. -4- 2 j3 (Cp'b



The expressionsfor the sector 7 flow-direction calibration coefficients listed above have
been expressedin terms of a and fl (not r and t as before). The reason for this is that the

linear combination of the three Cp... coefficients shown above is formed in such a way as to

maximize the calibration coefficient sensitivity to changes in a and ft.

In order to determine which sector to use when measuring in an unknown flow field,

the seven measured pressures are compared to each other. The sector (set of four holes) is

chosen based on which hole has the highest pressure. The presence of any flow separation

at the tip hole is then checked for by comparing P_ with the remaining three holes on the

lee side of the probe. When the flow is attached, the lee side holes register pressures that

are less then PT. If the difference between P7 and the three leeward pressures is less than

the chosen tolerance, then the flow at the tip hole number 7 is separated and the probe is

out of the flow angle range. In addition to the tip-hole separation test, a second separation

test is necessary. At high angles, the vortical flow on the lee side of the probe tip can induce

a higher pressure than that of the center hole PT, hence, causing the previously mentioned

test to fail. If at least three of the off-center pressures (-'°1 through P6) are less than P7

then the tip-hole separation check is valid. These tests may seem to be a bit awkward,

nevertheless they are necessary in order to prevent double-valued calibration coefficients and

hence erroneous flow-angle determination during data acquisition.

The calibration procedure follows.

1. The probe is rotated to a known angle and the seven pressures (referenced to the

tunnel wall static) and a tunnel reference condition (the total pressure) are recorded.

2. At each probe position, the 28 calibration coefficients (4 for each sector) are computed

and stored along with the 8 and ¢ angular probe position.

The probe should be calibrated over the entire anticipated range of probe flow angles.

Typically, an angular increment of 5 ° is satisfactory. In the present study, the incremental

change in angle was 5 ° covering a range of 0 angles from -30 ° to 80 ° and ¢ angles of -80 °

to 80 ° .

The procedure for using a calibrated probe to obtain the three components of velocity is

as follows.

1. The seven pressures and tunnel reference pressure are measured.

2. The probe sector is chosen based of the relative magnitudes of the recorded pressures.

3. The four pressure coefficients of the chosen sector are computed.

4. The probe flow-separation criteria are applied.

5. The unknown probe flow angles 8 and ¢ are determined by using the Akima interpo-

lation method (an IMSL subroutine; based on the method of ref. 11) to interpolate the Cp,,

9



Cp, calibration data, at the measured values of Cp., Cp,, for the flow angle 0,¢. The Akima

method uses fifth-degree interpolating polynomials and has continuous first derivatives.

6. The magnitude of the velocity is determined by interpolation of CP, o,.,, and Cp.,.,o,

at the 0, ¢ flow angles found in step 5 and then solving for P, ot,l and P,t_t_c. Equation 9 is

then used with Pn (the pressure of the selected hole) and P. (P = _ for sector 3, for' 2 '

example).

7. The final step is to use 0, ¢ and [ V [ to determine the velocity components in the wind

tunnel coordinate system. The velocity components in the wind-tunnel reference system are

(29)

(30)

(31)

As mentioned previously, the advantage of the sector approach is that it extends the

angular range of the probe by using pressures sensed by holes where the flow is Reynolds

number invariant. An illustration of this principle is shown in figure 8. In this figure, the

effect of velocity on Cp, is presented as ¢ is varied for a seven hole probe at constant 8, where

ACp, = Cp, - Ce. and Cp. is the average of Cp. for the six velocities tested at each position.

At low angles, the sectoring scheme chooses sector 7 (the low angle sector) and as can be

seen, the spread in the data is minimal for ¢ less than 30 °. At high angles, sector 5 is chosen

for angles greater than 30 °, and the data collapses onto one line. The reason the velocity

invariance fails for sector 7 at large ¢ is the flow separation over a portion of the probe tip.

The failure of the sector 5 data at low angles can be attributed to measurement inaccuracies.

As can be seen in figure 4, for the yaw meter, the quantity equivalent to P5 - (P4 + P6)/2

becomes small; hence minor inaccuracies can have a significant impact on Cp..

Shown in figure 9 is a 8 - ¢ map of the sectors chosen by the calibration scheme. The

symbols indicate the hole registering the greatest pressure. The boundaries on the right-

hand-side of this figure are the flow angle limitations as enforced by the two-probe flow

separation tests applied to the calibration data. A ballpark figure for the maximum allowable

l" resultant flow angle is approximately 70 ° to 80 ° for the 45.0 ° conical-tip seven-hole probe.

Presented in figure 10 are the four calibration coefficients for each sector. These data

give a visual indication of the probe sensitivity to flow angle. Regions of high probe flow-

angle sensitivity have greater spacing of the Cp,, Cp. data points in figures 10a and 10b.

As the flow angle increases, the probe sensitivity to the flow angle decreases. At low flow-

onset angles, the pitch and yaw direction are only weakly coupled as shown by the relatively

straight intersecting lines in figure 10a. At high flow-onset angles, the Cp,, Ce. variations

are nonlinear and strongly coupled.

10



Once the flow angle has been determined by interpolation of the data in figure 10 (a,b)

the static and total pressure coefficients are found by interpolation of the data shown in

figure 10 (c-f).

This approach to seven-hole probe calibration has been used in a study of the lee side flow

field on an ogive-cylinder at high angle of attack. Presented in figure 11 are the crossflow

plane velocity vectors at x/L -" 0.95 on a L/D = 3.5 ogive with a L/D = 1.0 cylindrical

afterbody at a = 30 ° and Rnr. -- 820,000. This data were measured in the 15-in.-by-15-in.

wind tunnel (fig. 7) and is discussed in greater detail in reference 12.

3.3 Pressure Probe Analytical Model

Typically, as shown in the previous section, seven-hole pressure probe calibration curves

are nonlinear at large probe incidence angles. This nonlinearity may lead to low probe

sensitivity for certain flow-onset angles. This situation may be avoided by using an analytical

model to predict probe characteristics and tailor the probe geometry for specific applications.

As shown in a previous section of this paper and also in reference 13, the flow around a

pressure probe can be modeled using potential flow theory. In reference 13, a 3-D analysis of

the behavior of static-pressure probes was studied by using a panel method. The objective

of this study was to find a static pressure probe geometry which is made insensitive to yaw

and angle of attack by contouring of the probe cross-section. Wind tunnel tests of four

computer-aided probe designs showed that this objective was accomplished, but no direct

comparisons of the predicted and measured probe response were presented.

In reference 14, the flow around a conical probe was modeled using slender body theory.

The effect of pitch and yaw angle variation was included through superimposing the flow at

a = 0.0 ° and a = 90.0 ° and a general expression for the pressure at any point on the probe

surface was derived from theory. The slender-body results produced the expected trends in

differential pressure with variation in flow onset angle, but again, no direct comparison with

experiment was presented.

In the present study, the approach to modeling pressure probe behavior was to combine

the approaches used in the two aforementioned references. The panel method approach is

preferred over the slender body approach due to the severe limitations imposed by slender-

body theory near the probe tip (dR/dz must be much less than 1); on the other hand, the

simplicity of slender body theory makes it desirable from a probe optimization point of view.

Before the final modelling approach was decided upon several slender body methods were

tried including the methods presented in references 14 and 15. There were slight differences

in the pressure distribution results of the various methods with the method of reference 15

giving the best results (results described below are based on the method of reference 15).

11



An example of the inability of slender-body theory to predict the pressure distribution

near the tip of a shape which is similar to a typical pressure probe geometry is shown

in figure 12a. This figure presents a comparison of the tip pressure variation with the x-

position for a cone with a cylindrical afterbody at a = 0 ° as predicted by a panel method,

slender-body theory, and as measured in an experiment (experimental data from ref. 16).

As can be seen, the slender-body theory result is in error by a significant amount in the

region where the greatest accuracy is required for probe modeling. The pressure peak at

x/D = 2.8 is captured well by Panair while there is virtually no indication of this pressure

peak in the slender body results. Shown in figure 12b is a comparison of the tip pressure

variation with x-position for a L/D = 10 prolate spheroid at a = 0 °. For this case, the data

compare favorably aside from what appears to be a small static-pressure offset error in the

experimental data of reference 17. These figures demonstrate that slender body theory is

sufficient for bodies with continuous, slowly varying shapes but is highly inaccurate for the

types of geometries which are common to multihole pressure probes. On pointed bodies,

singular behavior of the slender body equations at the tip causes substantial deviations from

the actual tip pressure.

In order to avoid computing a panel method solution for every onset flow angle, a modified

form of the superposition of the two-potential-flow solutions approach used in reference 14

has been applied. The model is quite general and can be applied to most probes which are
bodies of revolution.

The analytical model is based on the assumption that the flow around the probe is a

potential flow. At first glance, this may not seem to be a good approximation considering

that the flow separates from most probe tips at flow angles greater than 30 ° . As has been

shown, multihole probe calibration techniques fail when a pressure is used that is measured

in regions where the flow is separated. In regions where the flow is attached, the potential

flow is a good approximation of the real flow.

The computer program PANAIR (see ref. 18) has been used to find the potential flow

solutions required by the probe model. This panel method solves Laplace's equation for

the total velocity potential ¢ by superimposing quadratically varying doublet and linearly

varying source singularities on paneled portions of the boundary surface. The governing

equations and boundary conditions are

where

=0 (32)

v¢ = " oo at o¢ (33)

VC.VF=O on F(r, 0,z) =0 (34)

9 = #¢ (35)
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The solution for a body at an arbitrary angle of attack and sideslip can be found by

forming a linear combination of the solution at a = 0 ° and a = 90 °. If _x is the solution at

a = 0 ° and _2 is the solution at a = 90, then the solution at any a is given by

= ¢1co,(o,)+ (36)
It can be seen, by substitution, that this expression satisfies the governing equations and

boundary conditions for a body of revolution at angle of attack. To find _ at a given a and

fl for a body of revolution, a coordinate transformation may be used. This transformation

is equivalent to a rotation of the freestream velocity vector through an angle X to the x - z

plane as shown in figure 13. The transformation from the r, 0, z coordinate system to the

r, _, z system is defined by

= o + x (37)
where

• -it sin(J3)

x = ,,,r, t (38)

Correspondingly, the angle of attack is redefined and a new angle of attack _" is used in

conjunction with the expression for • to determine the velocity potential for a pitched and

yawed body of revolution.

q = C08-1[CO,.q(a)C08(t_)]

The pressure coefficient is given by

(39)

P- Poo I 57 12 Is
cp_ 1 2 =1 =1 (40)

 pUoo

No additional approximation is involved in this superposition and transformation of the

potential flow solution. This technique should be generally applicable to any body of revo-

lution where the potential flow solution is desired at an arbitrarily chosen flow onset angle.

A comparison of the computed and measured pressure variation with yaw angle at 0 = 0,

for the seven-hole probe is shown in figure 14. The trends and magnitudes of the computed

pressure coefficients agree fairly well with the experimental values. The main differences are

as follows.

1. The experimental pressure distribution drop-off with/3 of the tip hole (hole 7) is not

as dramatic as the computational drop-off. Possibly, this may be caused by small differences

in the actual and modeled tip geometries.

2. The peak pressure computed by hole 5 near/3 = -40 ° and hole 3 near/3 = 40 ° slightly

less than the measured value. Considering that the half-angle of the conical probe is 45.0 ° ,

13



it is expected that these peaks should be close to stagnation pressure, as is the case with

the experimental data.

3. At large negative yaw angles, the computed pressure of hole 2 is substantially higher

than the experimental results. This discrepancy is evidence of flow separation on the lee

side of the probe. Typically, when the flow separates on a body of revolution, the suction

developed on the lee side of the body is greater than that predicted by the potential flow,

owing to the presence of lee-side vortices. Similar pressure trends are shown for hole 6 at

large yaw angles and also for the other holes a_t different pitch angles.

Shown in figure 15 are the analytically determined calibration coefficients for the seven-

hole probe. These curves can be compared with the experimental calibration data presented

in figure !0. There are differences, but the general trends and magnitudes of the two results

are close enough to be of value to probe designers.

3.4 Error Analysis

An analysis was performed to determine the uncertainty of the present seven-hole probe

velocity component determination. The analysis included uncertainty of the pressure trans-

ducer calibration, uncertainty of the seven-hole probe calibration, uncertainty in the mea-

surement of flow angle, and velocity magnitude using the calibrated seven-hole probe.

Following fairly standard error analysis procedures (see ref. 19), an estimate of the total

precision (zero-centered) error in a measurement may be made by using the constant odds

combination given by

" OR 2
eR = v/_(_e ee, ) (41)

i=l s

All bias errors such as pressure transducer temperature drift and probe stem deflection have

been corrected for or neglected, hence they are not included in the analysis. In an actual

measurement situation, bias errors can be the dominant error source and care must be taken

to reduce the influence of these errors to a minimum.

The pressure transducer is calibrated by first reading the analog-to-digital (A/D) counts

with zero pressure applied (cz) followed by applying a known pressure difference (as mea-

sured by a manometer (h)), and reading the corresponding A/D counts (ere f). An unknown
pressure can then be determined from

h

P = (c,e! - ez) (c - cz) (42)

An estimate of the pressure transducer calibration error may be made using equations 41

and 42 and the identified sources of error and their estimated magnitude.
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Inaccuracies in the reference pressure due to manometer reading uncertainties (0.001 in.

H20) and a one-count A/D conversion uncertainty are the main factors which have been

included in the pressure transducer analysis. The combined effect of these errors leads to a

0.046-in. H20 pressure measurement uncertainty.

Owing to the complexity of the seven-hole probe calibration process (see equations given

in the Calibration Procedure) and the fact that the pressure measurement error propagates

through the measurement-chain, uncertainty analysis of the seven-hole probe calibration

is considerably more complicated than the pressure transducer analysis. To grapple with

these difficulties, the _jitter'approach, as discussed by Moffat (ref. 19), was used. The

eight measured pressures at each calibration angle were numerically varied by small known

amounts. The resulting variations of the calibration coefficients from their original values

are used to determine the OCp.../Oe_ terms of equation 41. With use of the appropriate 6ei

values, the total uncertainty of the calibration coefficients can be determined. The factors

included were uncertainty in pressure measurement and a one-count A/D error (a 12-bit

resolution A/D was used). Angular positioning errors were assumed to be negligible due to

the high accuracy of the 25,000 microstep per revolution positioning mechanism. The result

of this part of the analysis is 6Cp... which is the error in the calibration coefficients due to

the combined effects of the pressure measurement error and errors associated with the probe
calibration.

The uncertainty in the seven-hole probe measurement of velocity in an unknown flow

field (the end goal of this analysis) is dependent on the errors accumulated during the probe

calibration process and also the errors associated with the actual measurement using the

calibrated probe. The jitter approach has also been used to estimate these errors in a

manner similar to the calibration coefficient error analysis.

The uncertainty in the velocity magnitude determination is directly impacted by the

accuracy of the flow angle determination. As discussed in the calibration procedure section,

the velocity magnitude is determined by interpolating for CPto,,,_ and Cp,,,,,c at the measured

flow angle and then using these values to compute the velocity magnitude.

The error associated with interpolation of the calibration data is dependent on the degree

of nonlinearity of the calibration data and the truncation error of the interpolation scheme.

The magnitude of these errors can be estimated by applying the interpolation process to a

model equation which is based on the calibration data. The procedure for estimating the

error involved fitting a polynomial to the calibration data (the model equation), evaluating

the polynomial at the flow angle base points of a typical probe calibration, and then com-

puting the rms error which arises when the interpolation approach is applied to the modelled

calibration data. Several interpolation schemes were tried and it was decided that the Akima

method, which can handle irregularly spaced data points, and is accurate, was a good choice.

One of the major differences between the calibration method presented in reference 3

and the present approach is the use of polynomial calibration coefficient expressions (in ref.
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3), asopposed to the interpolation approachused herein. The Akima interpolation scheme
was chosenbecauseit was felt that the deviations (in somecasesas high as a 1.3° flow

angle discrepancy) could not be attributed to physical causes in the least-squares curve-fit

calibration data shown in reference 3. The Akima interpolation method is a weighted-

nearest-neighbors method which should be more accurate than curve-fit methods based on

equal weighting of all of the calibration data across the complete flow angle range.

In general, experimental data should be assumed to be correct unless the deviations

in the expected trends of data can be justified on theoretical grounds or be attributed to

experimental error. The error analysis of the present calibration procedure did not turn up

errors of this magnitude; hence the least-squares polynomial approach (used in ref. 3) was

probably the greatest source of error which could be significantly reduced.

Shown in figure 16 are the flow angle and velocity magnitude error predicted by the

foregoing analysis. As can be seen, the angle error varies parabolically (0 is constant for

each symbol type) with the flow angle ¢, which is similar to the three-hole yaw meter

results. The trend of the velocity magnitude error is not similar to the three-hole yaw meter

result owing to the different shapes of the Cp, o,,,E and Cp.,.,_ curves of the yaw meter and

seven-hole probe.

The validity of the above analyses can be tested by positioning the calibrated probe

at known angles to the flow and then measuring the velocity (or flow angles) repeatedly

using the data system. If the uncertainty prediction is accurate, deviation of the velocity

measurement should agree with the predicted precision errors. A probability density function

of many samples should form a normal distribution about the known angle that the probe

was positioned to. The importance of this validation is that once agreement is achieved,

measurement system changes may be made in a systematic way to reduce the error.

The predicted values of the seven-hole probe velocity measurement are summarized in

table 1. Since the sensitivity of the probe varies greatly over the onset flow angles studied,

two error totals are given, one representative of low flow angles and a second for onset angles

greater than 30 ° . These error values were determined by averaging over 700 error predictions

covering the entire flow onset angle range.

TABLE 1.- UNCERTAINTY PREDICTION.

Component Predicted Predicted Units

Low angles High angles

1 Pressure 0.046 0.046 in. H20

2 Angle 0.2 0.5 deg

3 Velocity 1 1 _ Uoo

Wind tunnel mean speed drift or very-low-frequency speed variation can pose a problem

during the seven-hole probe calibration. Typically, the seven pressures are not measured
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simultaneously. During the scanning time between ports, the flow at the probe tip may

change, causing an apparent change in measured flow angle. This error could be minimized

through the use of multiple pressure transducers and simultaneous sampling of the seven

pressures, although other errors associated with the calibration of multiple pressure trans-

ducers may be introduced. Wind tunnel flow angularity (typically, a 0.5 ° variation across

the test section) can also affect the accuracy of probe calibration through changes in the

freestream direction relative to the probe. This difficulty can be minimized by keeping the

probe near the tunnel centerline during the calibration process. Ambient condition changes

do not affect the flow angle measurements directly since the flow angle is determined from

pressure coefficients which are ratios of pressure differences.

Certain steps can be taken to reduce the measurement error to levels lower than shown in

table 1. The greatest gain in accuracy can be achieved by calibrating the pressure transducer

using a manometer which can resolve down to at least a thousandth of an inch H20. Use of

a 16-bit A/D converter (as opposed to a 12-bit A/D converter) will reduce the A/D errors

to the point where they become insignificant in most cases.

As shown in figure 8, the spread in ACp indicates that probe Reynolds number effects

may be present but are small (within the flow angle limitations of the probe). Isolation of

Reynolds number effects from other sources of error is difficult to accomplish and since these

errors do not seem to contribute significantly to the total error, they have been neglected.

4. CONCLUSIONS

The seven-hole probe is a versatile and accurate instrument for measuring the three compo-

nents of velocity in a flow field where the onset flow angle is high.

1. It has been demonstrated that the key to the success of many probe calibration

techniques is the ability to define velocity invariant pressure coefficients which are the ratio

of two pressure differences. This type of normalization is successful only when the flow over

the probe is essentially a potential flow.

2. The seven-hole probe calibration is conceptually simple and is essentially a variation

of a time-tested multihole probe technique.

3. The maximum probe onset-flow angle is approximately 70 ° for the present probe

geometry. For flow angles greater than 70 °, extensive flow separation occurs on the probe

tip, causing the calibration coefficients to become double-valued and velocity dependent in

violation of the assumptions of the calibration technique. As part of the data acquisition

procedure, a simple probe-flow separation test, based on the relative magnitudes of the seven

measured pressures, can be performed to insure the validity of the measurement.

4. Results of an error analysis show that the seven-hole probe of the present study can

17



measure angular variations to within approximately 0.5 ° and velocity magnitude to within

1.0 percent of the free stream. These error figures could be reduced significantly by reducing

the 0.046-in.H20 pressure measurement uncertainity of the present study.

5. A relatively accurate analytical model of the probe response, based on a unique

application of a panel method, has been developed and should be useful to multihole probe

designers.
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Figure 1.- Three-hole yaw meter.
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Figure6.- Sevenholeprobeandholenumberingconvention.
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(f) Static pressure coefficients for holes 1 to 6 (high flow angle).

Figure 15.- Concluded.
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Figure 16.- Seven-hole probe measurement error. (a) Flow angle error; (b) velocity magnitude error.
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